Multi - Criteria Optimization for Space Mission Design : a New Approach
نویسنده
چکیده
This paper presents a method to automate the spacecraft design through a multi-criteria optimization process based on the fuzzy logic theory. The spacecraft design is an iterative, definitely complex process, which requires a lot of resources in terms of designers’ expertise and of expended time. A code is here implemented, which automatically define a preliminary spacecraft configuration in terms of aboard subsystem set with respect to the optimization of the mass, the requested power, the cost and the availability of the whole system. In order to simulate the human behavior in solving conflicts rising from clashing situations, the fuzzy logic theory has been applied in the substitutive function computation. Uncertainty of the input parameters-implicit at the starting point of a sizing processis translated into mathematical formulation through the interval algebra rules. In order to validate the proposed method already flown or flying missions have been assumed as a reference, comparing the on-board subsystem set selected by the experts’ team with the simulation. The results are really encouraging as the method detects almost identical combinations, drastically reducing the time dedicated to the preliminary spacecraft design. From a theoretic point of view the simulation results of the proposed method have been compared with a classic Pareto-optimal point detection to further validate them.
منابع مشابه
Satellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملA NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES
This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملThe Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملMulti-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier
In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...
متن کاملMulti-objective design of fuzzy logic controller in supply chain
Unlike commonly used methods, in this paper, we have introduced a new approach for designing fuzzy controllers. In this approach, we have simultaneously optimized both objective functions of a supply chain over a two-dimensional space. Then, we have obtained a spectrum of optimized points, each of which represents a set of optimal parameters which can be chosen by the manager ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001